Ozone hoax just like global warming
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
About 48 tons of meteorites enter the atmosphere every day. I couldn't find the elemental distribution, but I'd guess there is some aluminum in there. How much of an increase is 14 tons aluminum per year over the many tons of aluminum entering the atmosphere already? That might be good to get a rough estimate of how impactful this is.
I would put money down the meteorites are below 30% aluminum so I can't see it being less than doubling.
Even assuming the meteorites are 100% aluminum it's a 30% increase which is quite significant.
From a short google search apparently only ~8% of asteroids in our solar system are metal rich which is mostly iron nickel. Rarer metals can be as rare as 100 grams per ton.
Which means of the 48 tons only 4.8 kilos could be aluminum. Compared to that the 14 tons would be a whopping ~3000% increase.
The asteroid weights are given per day while the sats per year.
So... Let me get this straight... The satellites burning up are essentially creating aluminum chemtrails that my mother-in-law keeps going on about?
futurism article... seriously?
There was the scientific article and the abstract in the body of the post if you wanted to read it, wtf more do you want?
Thanks Elon
You would think space engineers would‘ve run those numbers before sending tens of thousands of them in orbit. It‘s really annoying that we can only hope for the best at this point.
I fully expect they did. I think this is partly why Elon went from "there's no planet B" to a Saudi simp. Way to much money to be made to waste time on the concerns of scientists and the welfare of the planet.
Why would you think that?
When I fire up the grill, I don't do calculations on how much weight in CO2 I'm putting into the air and then extrapolate that to find the total mass of CO2 that grills generate globally. I usually just make burgers.
That space engineer made sure that they were on the right side of the rocket equation and they made it to orbit (which is hard on its own).
I agree that thorough environmental studies really ought to be happening, but I'm not surprised that aspects got missed.
I was just worried about Kessler syndrome and just felt relaxed that their orbits were low enough to naturally decay and never become a permanent problem. What this research seems to show is that the aluminum oxide dust does not settle in days/weeks, but it is fine enough to stay there for decades :/
Buy a ticket to mars. Problem solved.
The roughly 10-centimetre-long cube is made of magnolia-wood panels and has an aluminium frame, solar panels, circuit boards and sensors. The panels incorporate Japanese wood-joinery methods that do not rely on glue or metal fittings.
When LignoSat plunges back to Earth, after six months to a year of service, the magnolia will incinerate completely and release only water vapour and carbon dioxide
Huh? I’m confused.
heh, yea, the satellites are not just wood for sure, they goofed. But it's less metals, which helps.
The article linked at he bottom has a picture and more info on the wooden satellites.
https://futurism.com/the-byte/japanese-scientists-wooden-satellite
SpaceX has been receptive to design changes to starlink in the past to minimize impact, like decreasing reflectivity and reflection angles for astronomers. They might be receptive to moving to different alloy for the body construction.
Magnesium comes to mind that would be light but expensive. Steel alloys might be cheap and heavy options for later when starship is operational. Would those have similar effects on ozone, or is it only the aluminum oxides?
Magnesium oxides can also serve as a catalyst for lots of reactions, but I'm not sure if it will have the same effect in this specific context, I'd guess it would.
That's why I added the link to the wooden satallites, that also reduces the metal debris somewhat and reduces other effects like radio interference.
Wood is interesting, but the article doesn't address off gassing at all, which is a huge problem for communication satellites. Is there a way to keep the wood from off gassing? For 3d prints in vacuum, they metal coat them to keep the gas inside. Or maybe you could resin soak them? With hopefully an extremely UV stable resin. But I didn't know what the weight trade looks like then, resin is heavy.
But if you're looking composites anyway, carbon fiber would be another great option. Lightweight but with a few manufacturing constraints. But should burn up to carbon dioxide on reentry.
Its good to keep an eye out for new sources of pollution, but the possible ozone depletion from satellites burning up is a tiny tiny fraction of what we're doing on Earth right now for pollutants.
At least the article came with the numbers. Given what I regularly read about all the pollutants we daily pump into the atmosphere, the numbers in this article for the materials being atomized is...well, they're very small in scale.
Basically, if a few hundred tons per year is hurting the ozone (and other things), just imagine what the billions of tons per year of emissions does.
The point here is not that aluminum oxide "pollutes" on its own, it is that it "speeds up" the harmful reaction between ozone and any chlorine (like CFC) "pollutants" up there without being consumed, so it keeps acting over 30 years. It makes all the pollutants you mention "more effective" at depleting ozone.
I didn't see a mention in the paper on what amount the bump up would be with the maximum amount of AlO2 distributed in the layers of the atmosphere where the reactions would occur. When emissions are in the trillions of tons, I wonder if it would even be measurable.
When emissions are in the trillions of tons, I wonder if it would even be measurable.
emission of what? There aren't trillions of tons of Chlorine in the stratosphere (that's what interferes with O3) being pumped into the atmosphere. Are you thinking of CO2?
I doubt anybody can give a confident answer today about the value of the effect that a kg of Al2O3 can have per ton of atmosphere at ozone layer height, because that would involve not just doing what they did in the paper, but also figuring out what "shape" the Al2O3 particles have to know what their adsorption surface would be, for e.g. zeolites this can be 16m2 per gram. e.g. https://www.sciencenews.org/article/earth-extraterrestrial-space-dust-weight-meteorite but maybe it can be simply extrapolated from analogous metallic meteorite dust samples :/
Before anyone jumps on the Anti-Musk train, read the article, please. They admit that they don't understand the complications that could arise and that they don't have any hard figures for the damage being caused. I'll be the first to jump in and say that it's probably a bad thing to just let metals burn in in atmo, but let's make sure we discuss the facts, and not just the politics of the potential polluter.
Guys, let's not jump into conclusions. I'd say that it is not a real issue until at least a billion people have died from it.
I was actually reviewing the O3 depletion process https://en.m.wikipedia.org/wiki/Chlorine_monoxide and Cl only stops reacting with O3 when it ends up as ClO2, but that is rare, because ClO usually is too short-lived to react with another Cl into Cl2O, so it may be possible that a catalyst like Al2O3 could actually clean up Cl interfering with the ozone layer along with the effect of speeding up the nefarious reaction with O3 :D
Ah yes, the usual method of waiting until the issue becomes confirmed and also way too severe to fix instead of acting on precaution and harming profits of private companies. What could go wrong?
As opposed to acting before you understand the effects of your actions? Neither seem like good choices.
Probably the best option would be to research harder. Make the polluter fund a much larger scale research program to understand the problem and viable solutions as quickly as possible.
Ah yes, the usual method of waiting until the issue becomes confirmed and also way too severe to fix instead of acting on precaution and harming profits of private companies.
No, but as even them don't understand what the complications are and how much the damages could be, maybe to wait to have at least some hard number looks like a good idea.
What could go wrong?
And what could go wrong if we start to fight a problem that we don't understand how big it is, maybe using the wrong solution on a wrong scale ?
Perfect is the enemy of good.
If it is worth doing, it is worth getting it done, even if we aren't 100% certain or ready on a lot of things. Doctors don't wait for the worst before starting treatment. Specially if corrections carry none or way less risks than what is currently being done.
maybe to wait to have at least some hard number looks like a good idea.
Good plan. So they're holding off on starlink launches to let the science catch up, right?
Yeah, PFAS comes to mind. It took decades to confirm it's harmful to humans but at this point it is everywhere and hard to get rid of. Worst part is they try to use other chemicals to replace PFAS, but again how harmful they are we don't know and we will learn that decades later too because companies don't want to make long term research before releasing the product. Enviroment shouldn't be a billionaire's testing ground.
This is the best summary I could come up with:
While researchers have largely focused on the pollutants being released by rockets as they launch, we've only begun to understand the implications of having thousands of retired and malfunctioning satellites burn up in the atmosphere.
"Only in recent years have people started to think this might become a problem," said coauthor and University of Southern California astronautics researcher Joseph Wang in a statement.
Since it's practically impossible to get accurate readings from the kind of pollutants satellites release as they scream back through the atmosphere, scientists can only estimate their effects on the surrounding environment.
By studying how common metals used in the construction of satellites interact with each other, the team estimated that the presence of aluminum increased in the atmosphere by almost 30 percent in 2022 alone.
They found that a 550-pound satellite generates roughly 66 pounds of aluminum oxide nanoparticles during reentry, which would take up to 30 years to drift down into the stratosphere.
"The environmental impacts from the reentry of satellites are currently poorly understood," the researchers note in their paper.
The original article contains 371 words, the summary contains 176 words. Saved 53%. I'm a bot and I'm open source!