Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics. If you need to do this, try !politicaldiscussion
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
Skimming some material online, it looks like the best mechanism to get day-level dating for very old historical times are going to be celestial events, like eclipses, because we can run motions of those bodies backwards to compute precisely when the event occurred.
I searched for "first recorded eclipse":
https://www.livescience.com/59686-first-records-solar-eclipses.html
That isn't a first (well, other than in being the first known recorded eclipse to us), but my bet is that it'll be some event on the same day or within a specified number of days of an eclipse or similar.
So that probably places an outer bound on when such an event would have been known to have occurred, unless there's some other form of celestial event recorded way, way back when.
EDIT: Though it sounds like there is some controversy as to whether that is in fact what is being depicted.
https://www.atlasobscura.com/articles/oldest-eclipse-art-loughcrew-ireland
EDIT2: and also according to the article, our accuracy in running those back that far starts to fall off:
It sounds like one complexity is that while eclipses can be run accurately (maybe not where they are visible), the problem is that when the day occurred is not, and you want to know the day. Apparently, there are some unknown factors affecting the rate of Earth's rotation a bit, and the error is enough that it becomes significant across millennia.
https://theconversation.com/archeoastronomy-uses-the-rare-times-and-places-of-previous-total-solar-eclipses-to-help-us-measure-history-222709
So if you had an event that was recorded happening in conjunction with an eclipse, we could maybe tell you pretty precisely how long ago it was in units of seconds. But we wouldn't know how many days ago it was, because the day is not a fixed unit of time and we don't know sufficiently-accurately how the length of a day has changed over that period.