Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics.
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
No,
It is purely for dramatic effect.
In a gravity assist ( to be technical using a hyperbolic orbit of a large mass to change direction and gain velocity) the object is still following the curvature of space time. So the change in direction is affecting all particles in the object at the same time.
It is the same as people in the ISS orbiting the earth, they do not have to lean in the curve as they are following the curvature in spacetime around the planet. The only difference is one is a hyperbolic orbit (gravity assist) while the other is a ~~parabolic~~ elliptical orbit (ISS)
A parabolic orbit for ISS? So she shoots out into space? ISS has a pretty much circular orbit maybe a little elliptical. Parabolas are open.
Bugger, brain fart for me, you are right. It should have been elliptical.
I'll correct.