this post was submitted on 22 Dec 2024
1470 points (97.4% liked)

Technology

60058 readers
2807 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

It's all made from our data, anyway, so it should be ours to use as we want

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 2 points 1 day ago (1 children)

Doesn't Open AI just have the same efficiency issue as computing in general due to hardware from older nodes?

What are bitnet models and what does that change in a nutshell?

[–] [email protected] 4 points 23 hours ago* (last edited 23 hours ago)

What are bitnet models and what does that change in a nutshell?

Read the pitch here: https://github.com/ridgerchu/matmulfreellm

Basically, using ternary weights, all inference-time matrix multiplication can be replaced with much simpler matrix addition. This is theoretically more efficient on GPUs, and astronomically more efficient on dedicated hardware (as adders take up a fraction of the space as multipliers in silicon). This would be particularly fantastic for, say, local inference on smartphones or laptop ASICs.

The catch is no one has (publicly) risked a couple of million dollars to test it with a large model, as (so far) training it isn't more efficient than "regular" LLMs.

Doesn’t Open AI just have the same efficiency issue as computing in general due to hardware from older nodes?

No one really knows, because they're so closed and opaque!

But it appears that their models perform relatively poorly for thier "size." Qwen is nearly matching GPT-4 in some metrics, yet is probably an order of magnitude smaller, while Google/Claude and some Chinese models are also pulling ahead.