this post was submitted on 29 Sep 2024
57 points (84.3% liked)

Technology

60042 readers
1944 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 2 points 2 months ago* (last edited 2 months ago) (1 children)

I'm not sure we, as a society, are ready to trust ML models to do things that might affect lives. This is true for self-driving cars and I expect it to be even more true for medicine. In particular, we can't accept ML failures, even when they get to a point where they are statistically less likely than human errors.

I don't know if this is currently true or not, so please don't shoot me for this specific example, but IF we were to have reliable stats that everything else being equal, self-driving cars cause less accidents than humans, a machine error will always be weird and alien and harder for us to justify than a human one.

"He was drinking too much because his partner left him", "she was suffering from a health condition and had an episode while driving"... we have the illusion that we understand humans and (to an extent) that this understanding helps us predict who we can trust not to drive us to our death or not to misdiagnose some STI and have our genitals wither. But machines? Even if they were 20% more reliable than humans, how would we know which ones we can trust?

[โ€“] [email protected] 5 points 2 months ago

I think ML is used since about 20 years in medicine already. In various laboratory processes/equipment.

Maybe not as pure decision, but to point experts to where to watch and what to check.