this post was submitted on 17 Apr 2024
782 points (98.0% liked)
Science Memes
11081 readers
2627 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The number of solutions/roots is equal to the highest power x is raised to (there are other forms with different rules and this applies to R and C not higher order systems)
Some roots can be complex and some can be duplicates but when it comes to the real and complex roots, that rule generally holds.
To translate: As a child learning math this equates to “ignore math, the explanations don’t explain anything real, they only explain more math.“
“The only explanation is more abstraction with no real world application as far as math class is concerned. Frankly, there’s more application to your own life experience if you focus on language and the arts.”
Or you were just shit at maths and don't have any idea how useful it is because you avoid it like the plague.
I'm guessing that you were one of those "I won't ever use all this math" kind of students?
I was one of those students who asked how it would be used, the teachers didn’t do the whole real world application part, and I never needed to go past trig.
I work with engineers and use math like any other human on the planet but really wish mathematics was taught differently to make it more interesting. You hear a PHD candidate talk about the hairy ball problem and the math is interesting. Math class never was.
Boy do I ever use maths at work all the damn time.
And I'm a mechanic
I think you can make arbitrarily complicated roots if you move over to G^n^ which includes the R and C roots...
For example the grade 4 blade
(3e1e2e3e4)^2 = 9
in G^4^Complex roots are covered because the grade 2 blade
(e1e2)^2 = -1
making it identical toi
so G^n^ (n>=2) includes C.G^n^ also includes all the scalars (grade 0 blades) so all the real roots are included.
G^n^ also includes all the vectors (grade 1 blades) so any vector with length 3 will square to 9 because
u^2 = u dot u = |u|^2
whereu
is a vector.All blades will square to a scalar but blades are not the only thing in G^n^ so things get weird with the multivectors(sums of different grades). Any blade with grade
n%4 < 2
will square to a positive scalar and the other grades will square to a negative, with the abs of the scalar equal to the norm^2^ of the blade. Can pretty much just make as many roots as you want if you are willing to move into higher dimensional spaces and use a way cooler product.Then you can extend to arbitrary algebra
I thought this would be related to quaternions, octonions etc. but no, it's multivectors and wedge products. Very neat, I didn't know you could use them like that.
Oh no, you were right on the money. In G^2^ you have two basis vectors
e1
ande2
. The geometric product of vectors specifically is equivalent touv = u dot v + u wedge v
.. the dot returns a scalar, the wedge returns a bivector. When you have two vectors be orthonormal like the basis vectors, thedot
goes to 0 and you are just left withu wedge v
. Soe1e2
returns a bivector with norm 1, its the only basis bivector for G^2^.e1e2^2 = (e1e2)*(e1e2) = e1e2e1e2
A nice thing about the geometric product is its associative so you can rewrite as
e1*(e2e1)*e2
.. again that middle product is still just a wedge but the wedge product is anti commutative soe2e1 = -e1e2
. Meaning you can rewrite the above ase1*(-e1e2)*e2 = -(e1e1)*(e2e2) = -(e1 dot e1)*(e2 dot e2) = -(1)*(1) = -1
.. Thuse1e2
squares to -1 and is the same asi
. And now you can think of the geometric product of two vectors asuv = u dot v + u wedge v = a + bi
which is just a complex number.In G^3^ you can do the same but now you have 3 basis vectors to work with,
e1, e2, e3
. Meaning you can construct 3 new basis bivectorse1e2, e2e3, e3e1
. You can flip them to bee2e1, e3e2, e1e3
without any issues its just convention and then its the same as quaternions. They all square to -1 ande2e1*e3e2*e1e3 = -e2e1e2e3e1e3 = e2e1e2e1e3e3 = e2e1e2e1 = -1
which is the same as i,j,k of quaternions. So just like in G^2^ the bivectors + scalars form C you get the quaternions in G^3^. Both of them are just bivectors and they work the same way. Octonions and beyond can be made in higher dimensions. Geometric algebra is truly some cool shit.You lost me at "arbitrarily complicated," sorry.