this post was submitted on 16 Sep 2024
718 points (93.5% liked)

memes

10923 readers
3438 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to [email protected]

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 2 years ago
MODERATORS
 
top 50 comments
sorted by: hot top controversial new old
[–] [email protected] 26 points 3 months ago* (last edited 3 months ago) (1 children)

Me, a nerd: its just a joke don't go off on a tangent, dont go off on a tangent, dont go - just let it be.... I just.. I just...

I NEEEED IT

So achtbually, nature works with transcendental real numbers on the complex plane with uncountably infinite precision.

Lets break this math nerd statement down in a way normal people might understand. First, most numbers are multi-dimensional and live on a plane instead of a line. The straight integer number line like 0, 1, 2 is just a small slice of the plane. In this plane, imaginary numbers occupy their own dimension. Complex numbers which are made of both real and imaginary parts occupy another dimension.

Moreover, most numbers are also infinitely precise thus being uncalculatable. Their decimal places go on forever and ever without repeating or being representable with a ratio of integers. Its why we only have good approximations for pi instead of an exact pinpoint knowledge of it. There are methods to get closer and closer approximations but you need an infinite time frame to complete that unending process.

Theres actually somehow more uncountably real numbers than countable integers and ratios, even though they are both infinite. There are more decimal numbers between 0-1 than there are integers between 0-infinity. One form of infinity is literally bigger than another, and that bigger infinity is the one nature likes working with.

Moreover, most of our universal physical and mathematical constants are transcendental reals because nature gets a hard-on for baking multidimensional fractal holomorphic topology and complex nonlinear equations into its magical abstraction bullshit logic.

Theoretical physicist during the 20th century were VERY salty about finding complex and imaginary real numbers in their physical equations. Since it implies that complex numbers arent just imaginary tools of abstrction but somehow "real" and affects the universes physical machinery. Nonlinear dynamic equations put a bullet through the brains of classical scientific determinism. Thank you very much, chaos theory and entropy.

It's not that we invented imaginary numbers, its that they were the missing piece to fully complete our understanding of algebra. With them, we finally graduated from cave man linear algebra, to discovering holomorphic dynamics which model the way natural systems actually work. After 2000 years of banging basic logical abstractions together to make a enough decent sparks of discovery for a real smoldering fire.

Computer processing power sure helped to visualize these higher dimensional topologies for our little monkey brains to process with our eyeballs in real time instead of just thinking about this stuff in the minds eye. I sure cant visualize a 4D hypercube let alone a 20ishD hyperstructure that AI image network picture forms brought down to three dimensions.

Really its a miracle that we have even a thin narrow portion of numbers we can compute, all our regular integers and ratios are islands distanced apart by an infinitely deep ocean.

In case you were wondering about the stuff in the image: Multidimensional AI activation map showing how and image AI organizes its knowledge on a neural network. Similar concepts or images are closer together.

3D mandelbrot set with the logistic map highlighted along its real number line axis. https://github.com/jonnyhyman/Chaos

minibrot zoom in

algae colony arranging itself into conjoined 2nd iteration sierpinski triangle, screenshot from a journey to the microcosmos video.

pascals algebraic triangle encoding the sierpinski triangle by if the number is even or odd (base/mod 2)

the dynamic map of where a pendulum will land if pulled upon by three magnets equally spaced given its initial starting spot. https://youtu.be/C5Jkgvw-Z6E

[–] [email protected] 8 points 3 months ago* (last edited 3 months ago)

Yes, this reply, I was gonna make a joke along the lines that I'm sure to someone saying shit like this (that we invented numbers, imaginary or not) is like the meme forcing Italians to look at pineapple pizza being made ...

... but I would lie if this post didn't disturb me a bit to - and the "Talk nerdy to me" part just makes it worse. Nerd stuff has to have a certain level of precision, nerd kinks are exact.

[–] [email protected] 9 points 3 months ago

Imaginary numbers: proof that mathematicians don't understand branding.

[–] [email protected] 18 points 4 months ago (2 children)

But imaginary numbers were created to solve problems!

[–] [email protected] 9 points 3 months ago

And are a very elegant solution at that.

[–] [email protected] 3 points 4 months ago

Ah but that's man's greatest folly.

By answering one question we create a hundred more.

[–] [email protected] 19 points 4 months ago (2 children)

Imaginary numbers are the proof that even in mathematics you can discover stuff even though you don't understand what you have found. Complex numbers encode rotation.

[–] [email protected] 7 points 4 months ago (1 children)

Ever since I went down a particularly nasty rabbit hole and came out with a tenuous grasp on quaternions, imaginary numbers started feeling very simple, familiar and logical.

[–] [email protected] 2 points 3 months ago (1 children)

Yeah. The thing that made me "get" quaternions was thinking about clocks. The hands move around in a 2d plane. You can represent the tips position with just x,y. However the axis that they rotate around is the z axis.

To do a n dimensional rotation you need a n+1 dimensional axis. So to do a 3D rotation you need a 4D axis. This is bassicly a quat.

You can use trig to get there in parts but it requires you to be careful to keep your planes distinct. If your planes get parallel you get gimbal lock. This never happens when working with quats.

[–] [email protected] 2 points 3 months ago

I still maintain that quats are the closest you can get to an actual lovecraftian horror in real life. I mean, they were carved into a stone bridge by a crazy mathematician in a fit of madness. How more lovecraftian can you get?

[–] [email protected] 12 points 4 months ago (1 children)

Yup. When you have a circuit that is not purely resistive the inductive or capacitive load causes the voltage and current to not be in phase. It looks like ohms law is being violated. However the missing part of the energy is in the imaginary component to be returned latter.

[–] [email protected] 1 points 3 months ago (1 children)

But that is hardly a 'natural occurence' of complex numbers - it just turned out that they were useful to represent the special case of harmonic solutions because of their relationship with trig functions.

[–] [email protected] 4 points 3 months ago (1 children)

No. It's more what the previous poster said about encoding rotation. It's just not a xyz axes. It's current, charge, flux as axes. The trig is how you collapse the 3d system into a 2d or 1d projection. You lose some information but it's more useful from a spefic reference.

Without complex numbers you can't properly represent the information.

[–] [email protected] 0 points 3 months ago

The natural representation would be the transient solution u(t) or i(t). Harmonic solutions are merely a special case, for which it turned out complex numbers were useful (because of the way they can represent rotation). They certainly serve a purpose there, but imo this is not an instance of 'complex numbers appearing in nature'.

[–] [email protected] 14 points 4 months ago

And THEN the imaginary numbers started EATING ALL THE CATS AND DOGS

[–] [email protected] 41 points 4 months ago (3 children)

Imaginary numbers are as real as negative numbers.

[–] [email protected] 6 points 3 months ago (1 children)

Why stop there? They're just as real as any number.

[–] [email protected] 1 points 3 months ago

Exactly!
But why stop there? They're just as unreal as any number.

Some might say they are even about the same amount of number as any number.

[–] [email protected] 12 points 4 months ago (1 children)

Are they as real as real numbers though?

[–] [email protected] 15 points 3 months ago (1 children)
[–] [email protected] 9 points 3 months ago

Damn, this is more complex than I thought.

[–] [email protected] 10 points 4 months ago

Unless you're referring to the set of Real Numbers, in which case they're not real.

[–] [email protected] 14 points 4 months ago

OP, you need to watch this video. https://youtu.be/cUzklzVXJwo

SpoilerImaginary numbers exist in nature.

[–] [email protected] 12 points 4 months ago (1 children)

Math: Imaginary numbers!

Me: Fuck that, imaginary dragons.

[–] [email protected] 7 points 4 months ago (1 children)

For real man, Imagine Dragons

[–] [email protected] 1 points 4 months ago

Muppet fighting ring, funniest shit ever.

load more comments
view more: next ›