this post was submitted on 20 Dec 2024
12 points (92.9% liked)

Advent Of Code

981 readers
21 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 20: Race Condition

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 2 points 4 days ago* (last edited 4 days ago) (1 children)

Haskell

solution

import Control.Arrow
import Data.Array.Unboxed
import Data.Functor
import Data.List
import Data.Map qualified as M
import Data.Set qualified as S

type Pos = (Int, Int)
type Board = Array Pos Char
type Path = M.Map Pos Int

parse board = listArray ((1, 1), (length l, length $ head l)) (concat l)
  where
    l = lines board

moves :: Pos -> [Pos]
moves p = [first succ p, first pred p, second succ p, second pred p]

getOrigin :: Board -> Maybe Pos
getOrigin = fmap fst . find ((== 'S') . snd) . assocs

getPath :: Board -> Pos -> [Pos]
getPath board p
    | not $ inRange (bounds board) p = []
    | board ! p == 'E' = [p]
    | board ! p == '#' = []
    | otherwise = p : (moves p >>= getPath (board // [(p, '#')]))

taxiCab (xa, ya) (xb, yb) = abs (xa - xb) + abs (ya - yb)

solve dist board = do
    path <- M.fromList . flip zip [1 ..] <$> (getOrigin board <&> getPath board)
    let positions = M.keys path
        jumps = [ (path M.! a) - (path M.! b) - d | a <- positions, b <- positions, d <- [taxiCab a b], d <= dist]
    return $ length $ filter (>=100) jumps

main = getContents >>= print . (solve 2 &&& solve 20) . parse

[โ€“] [email protected] 1 points 4 days ago