this post was submitted on 20 Dec 2024
12 points (92.9% liked)

Advent Of Code

981 readers
21 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 20: Race Condition

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 3 points 5 days ago* (last edited 5 days ago)

Rust

I was stuck for a while, even after getting a few hints, until I read the problem more closely and realized: there is only one non-cheating path, and every free space is on it. This means that the target of any shortcut is guaranteed to be on the shortest path to the end.

This made things relatively simple. I used Dijkstra to calculate the distance from the start to each space. I then looked at every pair of points: if they are a valid distance away from each other, check how much time I would save jumping from one to the next. If that amount of time is in the range we want, then this is a valid cheat.

https://gitlab.com/bricka/advent-of-code-2024-rust/-/blob/main/src/days/day20.rs?ref_type=heads

The Code

// Critical point to note: EVERY free space is on the shortest path.

use itertools::Itertools;

use crate::search::dijkstra;
use crate::solver::DaySolver;
use crate::grid::{Coordinate, Grid};

type MyGrid = Grid<MazeElement>;

enum MazeElement {
    Wall,
    Free,
    Start,
    End,
}

impl MazeElement {
    fn is_free(&self) -> bool {
        !matches!(self, MazeElement::Wall)
    }
}

fn parse_input(input: String) -> (MyGrid, Coordinate) {
    let grid: MyGrid = input.lines()
        .map(|line| line.chars().map(|c| match c {
            '#' => MazeElement::Wall,
            '.' => MazeElement::Free,
            'S' => MazeElement::Start,
            'E' => MazeElement::End,
            _ => panic!("Invalid maze element: {}", c)
        })
             .collect())
        .collect::<Vec<Vec<MazeElement>>>()
        .into();

    let start_pos = grid.iter().find(|(_, me)| matches!(me, MazeElement::Start)).unwrap().0;

    (grid, start_pos)
}

fn solve<R>(grid: &MyGrid, start_pos: Coordinate, min_save_time: usize, in_range: R) -> usize
where R: Fn(Coordinate, Coordinate) -> bool {
    let (cost_to, _) = dijkstra(
        start_pos,
        |&c| grid.orthogonal_neighbors_iter(c)
            .filter(|&n| grid[n].is_free())
            .map(|n| (n, 1))
            .collect()
    );

    cost_to.keys()
        .cartesian_product(cost_to.keys())
        .map(|(&c1, &c2)| (c1, c2))
        // We don't compare with ourself
        .filter(|&(c1, c2)| c1 != c2)
        // The two points need to be within range
        .filter(|&(c1, c2)| in_range(c1, c2))
        // We need to save at least `min_save_time`
        .filter(|(c1, c2)| {
            // Because we are working with `usize`, the subtraction
            // could underflow. So we need to use `checked_sub`
            // instead, and check that a) no underflow happened, and
            // b) that the time saved is at least the minimum.
            cost_to.get(c2).copied()
                .and_then(|n| n.checked_sub(*cost_to.get(c1).unwrap()))
                .and_then(|n| n.checked_sub(c1.distance_to(c2)))
                .map(|n| n >= min_save_time)
                .unwrap_or(false)
        })
        .count()
}

pub struct Day20Solver;

impl DaySolver for Day20Solver {
    fn part1(&self, input: String) -> String {
        let (grid, start_pos) = parse_input(input);
        solve(
            &grid,
            start_pos,
            100,
            |c1, c2| c1.distance_to(&c2) == 2,
        ).to_string()
    }

    fn part2(&self, input: String) -> String {
        let (grid, start_pos) = parse_input(input);
        solve(
            &grid,
            start_pos,
            100,
            |c1, c2| c1.distance_to(&c2) <= 20,
        ).to_string()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_part1() {
        let input = include_str!("../../inputs/test/20");
        let (grid, start_pos) = parse_input(input.to_string());
        let actual = solve(&grid, start_pos, 1, |c1, c2| c1.distance_to(&c2) == 2);
        assert_eq!(44, actual);
    }

    #[test]
    fn test_part2() {
        let input = include_str!("../../inputs/test/20");
        let (grid, start_pos) = parse_input(input.to_string());
        let actual = solve(&grid, start_pos, 50, |c1, c2| c1.distance_to(&c2) <= 20);
        assert_eq!(285, actual);
    }
}