this post was submitted on 23 Jun 2024
249 points (94.9% liked)
Science Memes
11068 readers
2877 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I have so many questions about that freaking creature. Can it partially unfold to reach anything arbitrarily far away? And how would it go about washing it's infinite surface area?
That depends on the decay factor of one centaur to the next. If the centaurs shrink by anything more than a factor of two, then no. The creature will converge onto a single length.
Should be anything less than a harmonic decrease (that is, the nth centaur is 1/n the size of the original).
The harmonic series is the slowest-diverging series.
The assumption is that the size decreases geometrically, which is reasonable for this kind of self similarity. You can't just say "less than harmonic" though, I mean 1/(2n) is "slower".
Eh, that's just 1/2 of the harmonic sum, which diverges.
Yes, but it proves that termwise comparison with the harmonic series isn't sufficient to tell if a series diverges.
Very well, today I accede to your superior pedantry.
But one day I shall return!