this post was submitted on 25 May 2024
34 points (100.0% liked)

Ask Science

8644 readers
48 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 8 points 5 months ago* (last edited 5 months ago)

One clarification: electric charge, angular momentum, and color charge are conserved quantities, not symmetries. Time is a continuous symmetry though, and its associated conserved quantity is energy.

Similarly, information isn't a symmetry, but it is a conserved quantity. So I assume you're asking if there's an associated symmetry for it from Noether's theorem. This is an interesting question: while Noether's theorem ensures that any continuous symmetry will have a corresponding conserved quantity, ~~the reverse isn't necessarily true as far as I know.~~ In the case of information conservation, this normally follows naturally from the fact that the laws of physics are deterministic and reversible (Newton's laws or the Schrodinger equation).

If you insist on trying to find such a symmetry, then you can do so by equating conservation of information with the conservation of probability current in quantum mechanics. This then becomes a math problem: is there a transformation of the quantum mechanical wavefunction (psi) that leaves its action invariant? It turns there is: the transformation psi -> exp(i*theta)*psi. So it seems the symmetry of the wavefunction with respect to complex phase necessitates the conservation of probability current (i.e. information).

Edit: Looking into it a bit more, Noether's theorem does work both ways. Also, the Wikipedia page outlines this invariance of the wavefunction with complex phase. In that article, they use it to show conservation of electric current density by multiplying the wavefunction by the particle's charge, but it seems to me the first thing it shows is conservation of probability current density. If you're interested in other conserved quantities and their associated symmetries, there's a nice table on Wikipedia that summarizes them.