ich_iel
Die offizielle Zweigstelle von ich_iel im Fediversum.
Alle Pfosten mĂŒssen den Titel 'ich_iel' haben, der Unterstrich darf durch ein beliebiges Symbol oder Bildschriftzeichen ersetzt werden. Ihr dĂŒrft euch frei entfalten!
đ± Empfohlene Schlaufon-Applikationen fĂŒr Lassmich
Befreundete Kommunen:
Regeln:
1. Seid nett zueinander
Diskriminierung anderer Benutzer, Beleidigungen und Provokationen sind verboten.
2. Pfosten mĂŒssen den Titel 'ich_iel' oder 'ich iel' haben
Nur Pfosten mit dem Titel 'ich_iel' oder 'ich iel' sind zugelassen. Alle anderen werden automatisch entfernt.
Unterstrich oder Abstand dĂŒrfen durch ein beliebiges Textsymbol oder bis zu drei beliebige Emojis ersetzt werden.
3. Keine HochwÀhl-Maimais oder (Eigen)werbung
Alle Pfosten, die um HochwĂ€hlis bitten oder Werbung beinhalten werden entfernt. Hiermit ist auch Eigenwerbung gemeint, z.b. fĂŒr andere Gemeinschaften.
4. Keine BildschirmschĂŒsse von Unterhaltungen
Alle Pfosten, die BildschirmschĂŒsse von Unterhaltungen, wie beispielsweise aus WasistApplikaton oder Zwietracht zeigen, sind nicht erlaubt. Hierzu zĂ€hlen auch Unterhaltungen mit KIs.
5. Keine kantigen BeitrÀge oder Meta-BeitrÀge
ich_iel ist kein kantiges Maimai-Brett. Meta-BeitrĂ€ge, insbesondere ĂŒber gelöschte oder gesperrte BeitrĂ€ge, sind nicht erlaubt.
6. Keine ĂberfĂ€lle
Wer einen Ăberfall auf eine andere Gemeinschaft plant, muss diesen zuerst mit den Mods abklĂ€ren. Brigadieren ist strengstens verboten.
7. Keine Ă40-Maimais
Maimais, die es bereits in die WasistApplikation-Familienplauderei geschafft haben oder von RĂŒdiger beim letzten Stammtisch herumgezeigt wurden, sind besser auf /c/ichbin40undlustig aufgehoben.
8. ich_iel ist eine humoristische Plattform
Alle Pfosten auf ich_iel mĂŒssen humorvoll gestaltet sein. Humor ist subjektiv, aber ein Pfosten muss zumindest einen humoristischen Anspruch haben. Die AtmosphĂ€re auf ich_iel soll humorvoll und locker gehalten werden.
9. Keine Polemik, keine KöderbeitrÀge, keine Falschmeldungen
BeitrĂ€ge, die wegen Polemik negativ auffallen, sind nicht gestattet. Desweiteren sind Pfosten nicht gestattet, die primĂ€r Empörung, Aufregung, Wut o.Ă. ĂŒber ein (insbesonders, aber nicht nur) politisches Thema hervorrufen sollen. Die Verbreitung von Falschmeldungen ist bei uns nicht erlaubt.
Bitte beachtet auch die Regeln von Feddit.de
view the rest of the comments
Warum 2x2? Du brauchst doch nur 2 Dimensionen fĂŒr Real- und ImaginĂ€rteil, also im Grunde einen Vektor. Ist doch der zweidiminesionale Raum.
du brauchst 2x2-Matrizen, damit du sie auch wie komplexe Zahlen miteinander multiplizieren kannst. Eine komplexe Zahl z= a +bi wird dann dargestellt als die 2x2-Matrix
z = (a, -b; b, a) Wenn man zwei solche Matrizen multipliziert, sieht man, dass sich diese Multiplikation genau so wie die Multiplikation von komplexen Zahlen verhĂ€lt. Das ganze ist ĂŒbrigens im Prinzip dasselbe wie der SO(2) zu U(1)-Isomorphismus. Also ja, ich weiĂ auch nicht, was dieser Artikel soll - man kann komplexe Zahlen immer durch reelle 2x2-Matrizen ersetzen.
So ein KÀse, die Standardherleitung der komplexen Zahlen ist der R^2^ mit entsprechender Multiplikation und Addition keine Matrizen vonnöten, siehe z.B. Rudin.
Ganz streng genommen kannst du auch vektoren miteinander multiplizieren. Sind ja schliesslich 1x2 oder 2x1 Matrizen je nachdem wie du sie drehst. Nennt man inneres bzw. Ă€uĂeres Produkt je nachdem wierum du sie aufstellst.
Ja, du kannst natĂŒrlich auch den R^2 nehmen und eine custom Multiplikation drauf definieren - das ist, wie es standardmĂ€Ăig gemacht wird. Mein Punkt war, dass eine bestimmte Unteralgebra der 2x2 reellen Matrizen mit der Standard-Matrixmultiplikation eine den komplexen Zahlen isomorphe Algebra bilden.
Und nein, das innere und Ă€uĂere Produkt sind fĂŒr diesen Zweck nicht geeignet, da sie weder geschlossen oder assoziativ noch invertierbar sind. Wenn du ein Vektorprodukt definieren willst, dass sich u.U. so wie die komplexe Multiplikation verhĂ€lt, schau dir mal Doran, Lasenby: Geometric Algebra for Physicists an. Dieser Ansatz verallgemeinert sich mit der Benutzung der geraden Unteralgebra der geometrischen Algebra des Raumes Cl(3) ĂŒbrigens hervorragend auf Quaternionen, und mit der Raumzeit-Algebra Cl(1, 3) auf bikomplexe Zahlen.