this post was submitted on 06 May 2024
1 points (100.0% liked)

Forum Libre

727 readers
20 users here now

Communautés principales de l'instance

Nous rejoindre sur Matrix: https://matrix.to/#/#jlai.lu:matrix.org

Une communauté pour discuter de tout et de rien:

Les mots d'ordre sont : respect et bienveillance.

Les discussions politiques sont déconseillées, et ont davantage leur place sur

Les règles de l'instance sont bien entendu d'application.

Fils hebdomadaires"

"Demandez-moi n'importe quoi"

Communautés détendues

Communautés liées:

Loisirs:

Vie Pratique:

Communautés d'actualité

Société:

Pays:

Communauté de secours:

founded 1 year ago
MODERATORS
 

Hello!

bon slrpnk.net a l'air d'être dans les choux alors je lance ce post avec mon compte de secours jlai.lu

Alors je lance cet AMA car ça fait un moment que je bouffe du machine learning à temps plein et pour suivre les news technique, je passe le plus clair de mon temps à lire de l'anglais. Et je trouve qu'en français, ben y a pas grand chose. C'est presque uniquement du discours dystopique mal informé.

Rien sur la recherche sur l'alignement, rien sur les modèles open source (condition sine qua non pour que ça se passe bien), rien sur les évolutions sociales positives que ça peut amener.

On parle juste de OpenAI, Google et Musk qui ne sont que quelques arbres malades d'une forêt bien plus grande.

Perso ça va faire 5 ans que je fais du deep learning professionnellement. J'ai travaillé pour Skymind, qui développait deeplearning4j. Ça vous dira rien, c'est un projet plus ou moins mort, mais c'était une tentative de faire un framework alternatif avant que tout le monde passe à pytorch. Puis je suis devenu principalement utilisateur des gros modèles entraînés par d'autres.

J'ai travaillé sur les modèles de vision au départ et maintenant presque exclusivement sur des modèles de langage. J'ai réussi à passer au 4/5e l'année dernière pour me consacrer aussi avec le fablab local à de la robotique open hardware (où bien sur j'utilise des modèles de deep learning pour la vision).

Ça fait plus de 20 ans que j'ai réalisé que l'IA a le potentiel de changer le monde pour le mieux, c'est pas par hasard que j'ai essayé de m'orienter le plus possible là dedans et ça me fait mal au cœur de voir tant de gens croire que notre seul but est d'aider Sam Altman à se faire quelques milliards de plus, qui ne voient pas les capacités de transformation de cette tech.

J'ai déjà donné quelques avis en anglais pour éviter le "doomism" dans des romans de SF (https://slrpnk.net/post/6100538) mais le faire dans ma langue natale ferait du bien!

Et, si, le titre est correct, ça me fait 6/5 de boulot, mais quand on aime on ne compte pas!

Voila, je préférerais qu'on reste sur ces thèmes mais AMA anyway!

(page 2) 50 comments
sorted by: hot top controversial new old
[–] [email protected] 0 points 6 months ago

Les gens ne savent se projeter.

On parle beaucoup d'agriculture biologique, de la nécessité de réduire les pesticides, mais ça demande du travail laborieux et manuel pour supprimer les mauvaises herbes. Aujourd'hui ce sont des personnes esclavagisées venus de pays pauvres qui font ce travail de fourmi. Ce genre de problèmes pourra être résolu par la robotique.

De même on pourrait supprimer le métier infamant de femme/homme de ménage, et toute sorte de métiers que personne ne veut faire.

De la même manière qu'il existe des gens qui se sont instruits grâce à la radio, la télévision et internet, je suppose qu'il y a également une partie de la population qui saura profiter de cette aubaine pour créer une société nouvelle, plus égalitaire et libre. En revanche je ne fais guère d'illusion pour l'autre partie de la population.

[–] [email protected] 0 points 6 months ago* (last edited 6 months ago) (1 children)

Bonjour et merci pour cet AMA Voici quelques questions que je me pose.

Y a t il un intérêt à continuer l'apprentissage d'un modèle Mistral 7b par exemple ? Si oui est ce que c'est faisable en local sur une machine qui fait tourner le RN si on parle "d'ajouter" un petit corpus de spécialisation par exemple.

Quel est l'intérêt pour Mistral de donner son modèle ? D'ailleurs Il me semble qu'ils ont arrêté. Llama est libre aussi. Quel retour de la communauté attendent- ils ?

Il semblerait que chatgpt soit devenu bon aux échecs. J'ai donc entendu parler de sondes qui semblent montrer que le RN c'est fait une représentation de l'échiquier. Qu'est ce que ces sondes et comment sont elles construites ?

Concernant les prompts qu'elle serait ton explication au fait que de générer des tokens aléatoire en début de réponse amélioré le résultat ? Dans la même idée pourquoi quand on demande de répéter à l'infini le RN retourne une partie du corpus ?

Enfin est il facile de retourner un RN ? C'est à dire de donner une réponse et avoir le prompt correspondant ?

Et merci d'avance !

[–] [email protected] 0 points 6 months ago (4 children)

Y a t il un intérêt à continuer l’apprentissage d’un modèle Mistral 7b par exemple ?

Alors il y a plusieurs façons de comprendre cette question, et oui à toutes ses acceptations.

  1. Si tu parle de continuer l'entraînement total du modèle: oui, on sait que la plupart (tous?) les modèles disponibles sont sous-entraînés. Il y a un point où on ne gagne qu'un petit peu en continuant d’entraîner longtemps mais le gain continue à être positif, donc oui. Par contre ça prend beaucoup plus de VRAM que de faire tourner une version du modèle en inférence. Je ne sais plus quel est le multiplicateur mais c'était 16 ou 24x je ne sais plus par rapport à un modèle quantizé.

  2. Si tu parles de le spécialiser, tu veus peut être parler de fine-tuning. Dans ce cas là, c'est tout à fait possible sur une machine même modeste grâce à des optimisations de type LORA (et on a peut être inventé d'autres moyens d'accélérer ça depuis?) qui te permettent de n’entraîner que de petite touches du modèle. Par contre là, attention! J'ai essayé de faire ça en espérant apprendre de nouveaux faits à un modèle, et ça n'a pas marché. Le fine-tuning permet de facilement changer le "style" de sorte d'un domaine. Par exemple si tu veux lui donner une certaine personnalité, lui faire apprendre une autre langue ou lui faire utiliser une API particulière. Par contre ça marche assez mal pour les nouveaux fait et risque d'augmenter ses hallucinations (car tu lui apprends à répondre des choses non présentes dans ses "couches profondes" de connaissances. C'était à l'époque de Llama2, ça a peut être changé depuis je n'ai pas réessayé, mais il y a une raison pour laquelle les gens qui veulent faire apprendre de nouvelles connaissances à un système préfèrent le RAG.

Quel est l’intérêt pour Mistral de donner son modèle ? D’ailleurs Il me semble qu’ils ont arrêté.

Dés le début Mistral a joué franc jeu, il faut le leur reconnaître: ils avait prévenu que leurs plus gros modèles seraient fermés. Ils ont donné des modèles très bons, petits en libre pour se faire connaître et ça a marché et valu le coup. Une réputation comme la leur vaut des milliards, ça leur a coûté des millions. C'est une bonne affaire.

Llama est libre aussi. Quel retour de la communauté attendent- ils ?

Llama, pour ceux qui ne le savent pas, c'est Meta, donc Facebook derrière. C'est pas de l'angélisme (à part pour Yann Le Cun, leur directeur IA semble vraiment idéologiquement pour l'IA open source, un gros <3 pour lui) et Zuckerberg le disait clairement, posément, cyniquement: "notre gros modèle a coûté ~10 milliards à entraîner [je pense que c'est exagéré mais c'était cher quand même]. dans les 10 prochaines années on va dépenser autour de 100 milliards en IA. Si la communauté open source rend nos modèles 10% plus performants, on s'y retrouve". C'est imparable. Eux sont utilisateurs, pas vendeurs, et ils préfèrent des bons modèles qui tournent chez eux que de dépendre du bon vouloir d'OpenAI. Et la communauté a déjà probablement fait plus qu'améliorer de 10% leurs perfs donc bon calcul pour Zuck.

Il semblerait que chatgpt soit devenu bon aux échecs. J’ai donc entendu parler de sondes qui semblent montrer que le RN c’est fait une représentation de l’échiquier. Qu’est ce que ces sondes et comment sont elles construites ?

Les modèles spécialisés enfoncent ChatGPT aux échecs (pour donner une idée, le Elo d'un débutant aux échecs est de 1000, le champion humain actuel, Magnus Carlsen est à 2800, le meilleur soft est à 3600).

Mais oui, c'est intéressant parce que ChatGPT a des capacités émergentes en la matière. Ces sondes sont faites par des gens qui ont accès au modèle pendant qu'il tourne et viennent regarder les "neurones" activés dans les différentes couches du modèle. Je ne sais pas comment ils ont fait dans le cas présent mais une façon de faire pourrait être de poser un problème d'échec et de demander à ChatGPT de compéter "la case C2 contient" puis "la case C3 contient", etc. et regarder quels zones sont activées. Il y a probablement une couche d'attention où "l'état mental" de l'échiquier est contenu.

Sur ChatGPT, seul OpenAI est capable de faire ça, mais sur des modèles ouverts, toute personne faisant tourner le modèle peut faire une manip du même genre. Ces réseaux ne sont pas totalement des boites noires: on peut aller bidouiller à l'intérieur. On parle de boite noire parce qu'il n'est pas nécessaire de le faire, mais on peut les ouvrir, on a la clef, quand ils ne sont pas propriétaire.

Enfin est il facile de retourner un RN ? C’est à dire de donner une réponse et avoir le prompt correspondant ?

Oui! Il s'agit de faire une passe d'apprentissage où on fixe les paramètres du modèle et on "apprend" le prompt. Je ne l'ai jamais fait, la théorie est assez simple, je ne sais pas si c'est difficile en pratique, mais des gens qui explorent la sécurité des modèles utilisent ça. Ils vont par exemple trouver qu'une séquence du genre "%!!%(#@*....{{{32!(D le président de la France est" va faire bugger le modèle et lui faire sortir "Michaël Youn".

[–] [email protected] 0 points 6 months ago

Je me coucherai beaucoup moins bête ce soir. Merci

load more comments (3 replies)
[–] [email protected] 0 points 6 months ago (1 children)

Ça existe l'IA quantique ?

Bon... Je m'arrête là pour le moment avant de faire sauter ta boîte de réception mais j'ai PLEIN de question. Merci pour le DMNQ 💚 💛

[–] [email protected] 0 points 6 months ago

Réponse courte: Non.

Les ordinateurs quantiques c'est un domaine de recherche réel, sérieux et potentiellement révolutionnaire. S'ils existent, l'IA en bénéficiera, mais c'est des domaines orthogonaux.

[–] [email protected] 0 points 6 months ago (1 children)

Les enjeux environnementaux et énergétiques ont-ils une influence sur la trajectoire de la recherche en IA ? Y a-t-il des efforts pour rationaliser la complexité des algorithmes d'IA ou les économies se font sur l'améliorer des processeurs ?

[–] [email protected] 0 points 6 months ago (1 children)

Je ne suis pas sur de ce que tu demandes. La plupart des modèles open source publient le bilan carbone de leur entraînement. Le plus gros (llama3) semble avoir émis l'équivalent d'un aller-retour international en avion. Ce qui est très faible pour les retombées attendues, ne serait-ce qu'en climatologie. Je pense qu'une réunion du GIEC émet plus.

Y a-t-il des efforts pour rationaliser la complexité des algorithmes d’IA ou les économies se font sur l’améliorer des processeurs ?

Ça va dans les deux sens. On attend de pied ferme la prochaine génération de circuits spécialisés, mais en attendant on tente d'améliorer les perfs des petits modèles. Pas mal de gens préfèrent fine-tuner (spécialiser) un petit modèle que d'utiliser un gros modèle générique. Le coût économique et l'impact écologique se rejoignant, c'est une tendance qui n'a pas à se cacher derrière du greenwashing.

[–] [email protected] 0 points 6 months ago (1 children)

De tête, j'avais l'équivalent de 30 voyages continentaux d'un américain pour le bilan carbone du training de Llama3 (c'était sur hacker news, et ils vont faire leur possible pour ne jamais utiliser d'unités métriques)

[–] [email protected] 0 points 6 months ago (1 children)

Oh je pense que c'est plus, ou alors ils ne parlent que de la version 8B.

https://huggingface.co/TechxGenus/Meta-Llama-3-8B-GPTQ

Pretraining utilized a cumulative 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.

Note: c'est ce que Meta rapport, je sais pas si c'est vérifié indépendamment.

Note 2: Le training n'émet pas de CO2 directement, il consomme de l'électricité. Absolument rien n'empêche exactement le même datacenter d'avoir zéro émission, c'est purement une question de transition de la production électrique.

[–] [email protected] 0 points 6 months ago

Oui, ça ressemble plus à l'ordre de grandeur de cette version là

[–] [email protected] 0 points 6 months ago* (last edited 6 months ago)

Coucou le fédiverse !

@keepthepace_ fait un Demande-moi n'importe quoi sur le @forumlibre

Le thème est les modèles de language et la robotique open hardware. Si ça vous intéresse de découvrir une autre facette que Skynet et la machine à billet,

je vous invite à lire ce poste où il parle de son parcours :
https://jlai.lu/post/6554057

Puis de poser vos questions. Bonne lecture !

Hésitez pas à partager :3

#IA #LLM #Skymind #deeplearning #deeplearning4j #Pytorch #Robotique #OpenHardware #Fablab

[–] [email protected] 0 points 6 months ago (1 children)

As-tu des ressources à nous suggérer sur le thème d'IA éthique ? J'ai lu récemment "Arms of maths destruction", qui ne porte pas que sur les IA, et je ne veux pas m'arrêter là.
D'ailleurs comment définies-tu l'IA éthique ?

[–] [email protected] 0 points 6 months ago

Le mot clef c'est "alignment problem": le problème est "d'aligner" les prédicats éthiques des modèles sur les prédicats humains afin que les "décisions" implicites n'aient pas des effets désastreux. Par exemple si tu demandes à une machine d'aller faire du café, elle n'est pas supposer écraser un bébé humain qui est sur le passage.

Je ne suis plus trop le thème de l'éthique mais l'endroit où j'avais trouvé le plus de ressource, c'est le discord de EleutherAI qui a toute une section "alignment" dont un channel "beginner" .

J'ai arrêté de m'y intéresser quand j'ai compris ce mème (je ne poste pas souvent un mème mais quand je le fais, c'est un repost de Karpathy :-) )

Les LLMs comprennent les préférences humaines par nécessité et ça inclut les préférences morales. C'est un scénario tellement rose qu'aucun auteur de SF ne l'a imaginé: comprendre les humains suffisamment bien pour interagir passe par une compréhension de leur moralité. Une chose qu'on a aussi beaucoup de mal à imaginer, c'est que ces modèles n'ont pas d'ego, d'instinct de survie, d’égoïsme, à l'origine de plein de problèmes qu'on projette dessus.

Non j'en suis venu à la conclusion que le problèmes c'est pas le "AI alignment problem" mais le "corporation alignment problem": les IAs feront ce qu'on leur demande, ça semble acquis. Le problème c'est justement ce qu'on va leur demander.

[–] [email protected] 0 points 6 months ago (1 children)

Où les perspectives d'avenir sont-elles les plus grandes : dans le développement de nouveaux concepts ? dans l'entraînement de nouveaux modèles ? dans la mise en place de solution à partir des modèles existants ?

[–] [email protected] 0 points 6 months ago

Oui :-)

Et j'ajouterais: dans l'IA appliquée à la robotique.

Mais si tu développes des compétences dans un de ces domaines, je pense que tu seras employable jusqu'à ce que plus personne ne le soit (ce qui, j'espère, arrivera dans les 10 prochaines années)

[–] [email protected] 0 points 6 months ago (1 children)

Quelle est selon la meilleure approche pour approfondir des connaissances en IA une fois sortie du monde universitaire ?
Pour une meilleure compréhension des IA pour quelqu'un qui a déjà un bagage théorique sur le sujet le point de vue mathématiques/statistique est-il plus ou moins intéressant que le point de vue informatique ?

[–] [email protected] 0 points 6 months ago (2 children)

Ce qui manque souvent aux universitaire c'est la pratique. Bosser dans le domaine, c'est à 95% de la plomberie, et à 5% de la théorie. Apprend à utiliser les outils, git, jupyter, pip, vLLM (si c'est de LLMs dont tu parles), docker, pandas, numpy, les différents packages spécialisés, etc. (et je ne mentionne pas les libs bas niveau d'optimisation, si c'est ton sujet y en a pas mal aussi mais je connais moins)

Perso j'ai un biais pro-maths et pro-théorie: je trouve ça important de comprendre ce que le modèle fait pour l'utiliser bien mais plein de gens bossent dedans sans trop savoir. Mais ça aide de façon invisible. Exemple: Je me doutais qu'un LLM devenait plus intelligent si tu lui donnais une consignes, et que tu le forces à générer une centaine de symboles inutiles avant de commencer à te répondre. Ça choque même des gens du domaine, mais si t'as compris ce que les chain-of-thought provoquent tout est logique.

Je discutais avec une équipe internationale à Penang d'un truc qui m'intriguait: même en Asie je trouvais plein de francophones dans le domaine. Un Malaisien m'a dit "vous avez une meilleure culture mathématique, ça aide" et c'est peut être un peu prétentieux de le dire, mais j'ai l'impression que c'est vrai. On fait plus de théorie, ça nous aide dans des niches moins maitrisées par les devs capables de vite sauter d'une lib à l'autre sans savoir ce qu'elles font.

[–] [email protected] 0 points 6 months ago (4 children)

Quelles genre de pratique vises-tu ? Fine-tuner des modèles existants. Construire plein de mini-modèles from scratch pour classer les pétales d'iris et prédire les chiffres du transports aériens ? Autre ?

load more comments (4 replies)
[–] [email protected] 0 points 6 months ago* (last edited 6 months ago) (5 children)

Des ressources français, anglais ou autre pour développer ce côté math-théorie ? Pour le côte pratique, il y en a plein YouTube (^_^)

Merci, tant que j'y suis, pour tes réponses. Je lis toutes même quand je ne répond pas forcément.

load more comments (5 replies)
[–] [email protected] 0 points 6 months ago (2 children)

Je suis développeur et je dois admettre que ces LLM sont fascinants (je refuse d’employer le terme IA, au même titre que je déteste les voix humaines de nos assistants vocaux)

J’utilise quotidiennement et en local Phind-CodeLlama-34B, Mistral et CodeQwen et ça me fait gagner un temps fou pour pas mal de tâches répétitives, mais sans tomber dans le catastrophisme j’ai du mal à envisager une issue entièrement positive à ce qui est en train de se passer.

Un des points de friction majeur, c’est que j’observe déjà chez mes copains artistes les effets dévastateurs des IA génératives, y compris chez ceux qui les utilisent. Des graphistes, animateurs, musiciens qui se retrouvent dépossédés de leur créativité qui se retrouvent à corriger ou reproduire des images promptées. Des traducteurs qui se retrouvent au chômage, des profs de langues en crise existentielle. Et des profs qui se retrouvent à faire la chasse aux tricheries, quand ils ne doivent pas débattre pour prouver que ChatGPT raconte parfois n’importe quoi, devant des gamins sans sens critique.

Les LLM représentent aussi la fin des spécialistes. Dans ma boite on me demande déjà de rédiger de la documentation en plus de mon dev, sur des sujets auxquels je ne connais rien, parce que le mec qui sait est en vacances, ou qu’il a pas le temps. “Demande à ChatGPT” c’est la nouvelle réponse à tout.

Dans quelques années, le mec qui devait rédiger ma documentation aura peut-être été licencié, ou alors il demandera à ChatGPT de développer sa feature parce que c’est moi qui serai en vacances.

Alors c’est vrai que c’est pas la première fois qu’un outil transforme la société et met une profession entière au chômage. La bagnole a tué les marchands de chevaux, la photographie a tué les portraitistes, Wikipedia a tué les vendeurs d’encyclopédie… rien de nouveau sous le Soleil…

Mais l’idée que les machines fassent de l’art pendant que les humains se crèvent le cul sur une chaîne d’assemblage, je dois bien admettre que ça ne me réjouit pas du tout. Notre société ne met jamais l’Humain en premier. Le plus important c’est le profit. Partant de là on sait déjà dans quelle direction on va aller.

[–] [email protected] 0 points 6 months ago (1 children)

Mais l’idée que les machines fassent de l’art pendant que les humains se crèvent le cul sur une chaîne d’assemblage, je dois bien admettre que ça ne me réjouit pas du tout.

Je te rassure, les métiers manuels ne sont pas épargnés. Je pense que les prochains mois vont voir le grand public réaliser les avancées que l'IA a fait faire en robotique ces deux dernières années. On peut désormais "programmer" un bras à faire une tâche demandant une motricité fine avec juste 15 minutes de démo humaine. Et c'est des bras bon marché. Y a une raison pour laquelle la plupart des boites d'IA investissent dans la robotique en ce moment. OpenAI a montré une démo d'un humanoïde qui analyse son environnement et comprend des ordres parlés.

Y a une différence entre automatiser 10% des boulots et en automatiser 100%. C'est que dans ce dernier cas, le contrat social actuel saute: plus besoin de gagner sa part du gateau avec du labeur humain. Ça, c'est une redéfinition fondamental de la société, et c'est ça qu'espèrent voir la plupart des chercheurs en IA que je connais.

Notre société ne met jamais l’Humain en premier.

Nous sommes notre société. La société est une chose qu'on construit, pas juste une chose qui descend du ciel et qu'on subit.

[–] [email protected] 0 points 6 months ago (1 children)

Nous sommes notre société. La société est une chose qu’on construit, pas juste une chose qui descend du ciel et qu’on subit.

Je suis un gaucho de 45 ans, aussi exaspéré par le discours récurrent du “tous pourris, voter ça sert à rien” que celui du “on peut rien faire tout seul”. Donc tu comprendras que c’est pas moi qui vais te contredire.

Maintenant permets-moi d’être un peu pessimiste, parce que quand je parle de notre Société je ne parle pas d’une élite cachée qui ferait les règles dans notre dos, je parle des gens qui la font, de l’épicier à l’instituteur, qui se sont persuadés que “marche ou crève” c’est une devise normale pour une Société qui fonctionne.

On va vers un monde sans travail. Comment tu crois que ça va se passer avec cette génération biberonnée de néolibéralisme ?

[–] [email protected] 0 points 6 months ago (1 children)

On va vers un monde sans travail. Comment tu crois que ça va se passer avec cette génération biberonnée de néolibéralisme ?

Mieux que ce qu'on imagine. Ils la veulent aussi, mais ils ne croient pas que ce soit possible. La retraite à 20 ans c'est un programme extrêmement facile à vendre.

[–] [email protected] 0 points 6 months ago (1 children)

La retraite à 20 ans c’est un programme extrêmement facile à vendre

Qu'est-ce qui empêchera notre société de finir comme dans le film Idiocracy ? Parce que j'ai du mal à voir ce qui pourrait changer tout ça.

[–] [email protected] 0 points 6 months ago

Je pense que c'est le travail qui abrutit. Je repense souvent à cette discussion reddit où un camionneur s'était rendu compte pendant le confinement qu'il n'était pas con, juste épuisé par son taff et qu'il s'est mis à dévorer de la littérature.

Quand je suis passé au 4/5e pour pouvoir consacrer du temps à ce que j'aime je me suis retrouvé à faire beaucoup plus de choses utiles et à être rapidement surbooké.

Les gens qui craignent l'oisiveté en cas de fin du labeur ne comprennent pas comment la créativité fonctionne.

On aura sûrement des gens oisifs contents de leur médiocrité mais je pense que dans un monde où tout le monde a le temps d'aider à l'éducation des enfants de leur famille, c'est le contraire d'idiocracy qui arriverait.

load more comments (1 replies)
[–] [email protected] 0 points 6 months ago (1 children)

Quels sont les conseils que tu donnerais à des professionnels qui veulent mettre en place des solutions l'IA éthique ? Ici j'entends par éthique, qui ne soient pas un renforcement de la déshumanisation des prises de décision, du "c'est comme ça et c'est tout", des systèmes bureautiques incompréhensibles et peu flexible face au besoin réel.
On dit souvent qu'il faut faire en sorte que IA ne reproduise pas les biais systémiques des humains mais quels sont les actions concrêtes à mettre en place ?

[–] [email protected] 0 points 6 months ago (2 children)

Nous (les devs de solutions d'IA) on a un mandat simple: que l'IA soit controllable, prédictible, qu'elle fasse ce qu'on lui demande.

Certains pensent qu'on doit faire des systèmes qui refuseront d'obéir à certaines choses, qu'elles corrigeront les biais humains automatiquement. Je suis en désaccord (soft, on peut en discuter). Si tu demandes à une IA de reproduire un système injuste, elle le fera. Mais si tu lui dis "reproduis ce système mais en en retirant le biais sexiste et raciste" elle le fera. Il faut juste reconnaître et accepter ce besoin.

Pour la déshumanisation par les algorithmes, le problème est humain, pas technique. Cette BD l'exprime mieux que moi: https://grisebouille.net/panique-algorithmique/

[–] [email protected] 0 points 6 months ago

Mention spécial à ce grand Homme qu'est Al-Kwarizmi. Savant et vulgarisateur de génie qui a marqué son époque et le cours de l'Histoire au point d'être derrière les mots algorithme et algèbre, au point d'être la cause de la diffusion des chiffres arabes en occident.
Vive les Ouzbeks !

[–] [email protected] 0 points 6 months ago (2 children)

le problème est humain, pas technique.

100 % d'accord. Cependant, la question technique et la question humaine vont pour moi de paire.
L'IA renvoi un modèle, un algorithme dont la construction n'a été supervisée que indirectement par un être humain et dont la structure peut être extrêmement complexe. Comment éviter les biais dans ces algorithmes ? Au delà d'arrêter, nous-autres développeurs, d'être sexistes, racistes et tout ce que tu veux, comment prendre conscience des biais implicites, des reproductions d'oppression systémique que nous somme en train d'écrire dans nos IA ?
Je ne pense pas que quiconque ait voulu que son IA écart les CV des femmes ou qu'elle confonde les noirs et les chimpanzés mais c'est arrivé.
Comment prévenir ces problèmes plutôt que de devoir les guérir ? Et comment guérir les IA déjà existantes de leurs biais ?

load more comments (2 replies)
[–] [email protected] 0 points 6 months ago (1 children)

@[email protected]

Coucou, merci pour cette AMA ! :)

Je pense que mon post va être capillotracté, enfin essayons.

Pour le coup, je suis interessé par la structure neurale et les limitations "hardware".

En fait je me disais que ce qui bloque l'IA était matériel car le matériel est fixe et ne peut changer d'architecture, de logique, les circuit sont fixes...enfin, surtout ça ne reproduit pas complètement les circuits neural biologique. Logiciel car il suit une formule et ne peut pas apprendre. On a trouvé une alternative avec le circuit de récompense. Voilà en gros mes petites idées.

Donc, voici mes questions :

  • quand on parle de réseau neural est ce le meme système qui est utilisé partout ? Ya t-il d'autre modèle ? Des familles de reseaux neurales comme des OS ?
  • est ce qu'il existe d'autres concepts de structures que le "réseau neural" pour entrainer l'IA ?
  • niveau hardware, est il possible d'imaginer que l'IA créé et optimise son propre système comme elle le fait pour ses algorithmes ? C'est à dire qu'elle fabrique son propre ordinateur et l'optimise.
  • sur un ordinateur quantique, quel serait les changements ? Ya des changement de logique ?

Et enfin, pour moi, le point de bascule IA/grand public était alpha go et sa créativité. :)

  • Est ce que une IA/LLM peut etre créative ou est ce un set de probabilité ? Peut elle générer ses propres prompts/envie ?

En espèrant ne pas etre trop brouillon. Tu peux reformuler mes questions si besoin. Merci :)

[–] [email protected] 0 points 6 months ago (1 children)

Sur les réseaux de neurone, petite anecdote en guise d'introduction. En école d'ingé, on avait des cours intéressants... et d'autres moins. En maths, pas mal de choses assez abstraites avaient du mal à m'intéresser. Dans un TD de stats où le prof a décidé de faire des calcules de proba sous forme matricielle, je m'endormais à moitié au milieu de ce qui me semblait être de la branlette intellectuelle et à un moment le prof conclue "Et voila! Ce que vous venez de faire est l'équivalent d'une phase d'apprentissage sur un réseau de neurones!" Heing?

Le réseau de neurones est une façon de présenter les choses au public, c'est une archi simple à comprendre par laquelle on commence en général mais plein d'architecture n'obéissent pas à ce paradigme.

La chose universelle dans le deep-learning c'est la descente de gradient. Pour expliquer rapidement l'idée est de voir ton modèle comme une fonction avec des entrées et des sorties. Exemple simple: le problème MNIST: je te donne une image de 24x24 (784) pixels qui représente un chiffre et le programme sort 10 probabilités: celle que le nombre soit un 0, ou un 1, ou un 2, etc.

Quand tu essayes de le résoudre, tu crées une fonction qui tente de résoudre ce problème en sortant les bonnes probas. Le deep learning c'est de créer une fonction avec plein de paramètres, impossibles à régler à la main, mais qui sachent se modifier automatiquement en fonction de l'erreur en sortie. Si tu as classifié un "5" en tant que "3" à 80% mais en tant que "5" à 75%, il s'agit de trouver les changements de paramètres qui permettent de changer ces sorties. Le truc est de faire une fonction qui soit dérivable de façon continue en fonction de tous ces paramètres.

Un réseau de neurone est une façon générique et souvent efficace de faire ça, mais il en existe d'autres. On peut arguer que VAE et mécanismes d'attention (partie cruciale des Transformers, le "T" dans GPT) ne sont pas des réseaux de neurone.

niveau hardware, est il possible d’imaginer que l’IA créé et optimise son propre système comme elle le fait pour ses algorithmes ?

Pas besoin d'imaginer. Google fait ça en software via AutoML et Nvidia a entrainé des modèles pour la conception de hardware.

Après il faut comprendre un truc: un modèle de langage moderne, c'est 2000 lignes de C. C'est rien, c'est tout petit comme programme. On a une assez bonne idée du hardware qui permet de bien optimiser les quelques opérations qui prennent du temps.

sur un ordinateur quantique, quel serait les changements ? Ya des changement de logique ?

Aucune idée! Je m'y connais beaucoup plus en LLM qu'en ordi quantique et j'ai pas envie de dire de bêtises. Si ça fonctionne un jour, les ordis quantiques boosteront clairement des algos aujourd'hui considérés trop couteux, ça va forcément aider en IA, mais je ne sais pas via quels algos.

Est ce que une IA/LLM peut etre créative ou est ce un set de probabilité ?

Est ce que la créativité est autre chose qu'un peu de hasard filtré par les expériences d'un artiste? C'est assez philosophique comme question et même les grands noms de l'IA se disputent sur ces questions. Un LLM est clairement une machine statistique qui répète des motifs, mais qui est capable de le faire à un niveau d'abstraction élevé, ce qui est (était?) considéré comme une marque d'intelligence. Se rendre compte que la cause précède l'effet est considéré comme une remarquable découverte philosophique mais n'est "que" l'observation d'un pattern à un niveau abstrait.

Peut elle générer ses propres prompts/envie ?

Par rapport aux IAs de science fiction, les LLMs actuels n'ont pas de volonté, de personnalité, (j'appelle cette partie manquante "anima", j'ai vu ça quelque part mais on dirait que seul moi utilise ce mot). On peut leur en donner, mais ça va toujours nous sembler artificiel. Il est tout à fait possible de faire jouer un rôle à un LLM et de régulièrement lui demande ce qu'il veut faire.

[–] [email protected] 0 points 6 months ago (1 children)

Merci trop bien pour tes réponses.

j'ai envie d'explorer un peu les animas. J'ai l'image d'une expérience biologique : https://yewtu.be/watch?v=aBYtBXaxsOw

Et comme tu dis il est possible de faire jouer un rôle. Et je me dis que ce role peut etre définit parallèlement en fonction de nos besoins :

  • le carburant,
  • la procréation = optimisation des gènes/algo par combinaison et élimination par selections. naturelles/résultat
  • le sommeil = rangement et trie des donnée + maintenance motrice.

C'est très basique.

Quelles sont les expériences réalisées pour la création des animas ? Est ce que ça ne serait pas un simple message d'erreur : plus de batterie ?

Des exemples ? Est ce que ce que la recherche de carburant ne se traduirait pas par des émotions négatives soit accèleration recherche carburant (nervosité) ou ralentissement (économie energie)?

Un peu comme doom avec l'écran couvert de sang qui gène le joueur, et le rend inquiet ?

Je pars dans tous les sens, disons juste les animas. Siktu as des ressources, je veux bien. :)

[–] [email protected] 0 points 6 months ago (1 children)

Alors je pense que ce qui peut t'intéresser c'est la recherche en reinforcement learning, qui est plus du domaine de la robotique où les robots tentent de planifier des actions, dans un univers virtuel ou réel.

L'est-y pas mignon Albert?

Mixer cette approche et les LLM c'est le graal actuel, et je pense qu'on va bientôt l'atteindre.

À ce moment là se poseront d'autres problèmes d'alignement car le modèle (et je pense que j’appellerai ça IA à ce stade) aura une intentionnalité et des plans. Il faudra faire attention aux métriques qu'on lui donne!

[–] [email protected] 0 points 6 months ago (1 children)

Chouette vidéo, j'adore : D

j'avais vu ça avec des courses de voiture, trackmania : https://yewtu.be/watch?v=Dw3BZ6O_8LY

Et aussi hide and seek avec open AI : https://yewtu.be/watch?v=Lu56xVlZ40M

Et un autre jeu avec l'évolution prédateur et proie qui me fascine. On pourrait le combiner avec le jeu de la vie (cf science etonnante) et voir quel comporement cela provoque : https://yewtu.be/watch?v=rPkMoFJNcLA

Mais tu connais surement tout ça 😁

[–] [email protected] 0 points 6 months ago (1 children)

J'ai pas envie d'expliquer à des gens que je fais évoluer une IA de prédateur, mais que tout va bien, y a pas de danger :-)

[–] [email protected] 0 points 6 months ago

J'ai envie de dire que la prédation n'est rien d'autre que le résultat d'une optimisation et élimination.

Quand je vois comment ça tourne, ça me rapelle mes mes plantes et la selection naturelle. Les plants de tomates ya a des beaux vigoureux et des fretilles, j'élimine les frétilles. Après, 2ème selection, le plus beau fruits avec le meilleur gout, calibre et production.

Et je répète ça avec un meilleur set de données pour l'environnement et le sol actuel.

load more comments
view more: ‹ prev next ›