Machine Learning

1950 readers
1 users here now

founded 4 years ago
MODERATORS
51
52
53
54
 
 

Itamar Turner-Trauring writes:

These sort of problems are one of the many reasons you want to “pin” your application’s dependencies: make sure you only install a specific, fixed set of dependencies. Without reproducible dependencies, as soon as NumPy 2 comes out your application might break when it gets installed with new dependencies.

The really short version is that you have two sets of dependency configurations:

  • A direct dependency list: A list of libraries you directly import in your code, loosely restricted. This is the list of dependencies you put in pyproject.toml or setup.py.
  • A lock file: A list of all dependencies you rely on, direct or indirect (dependencies of dependencies), pinned to specific versions. This might be a requirements.txt, or some other file dependencies on which tool you’re using.

At appropriate intervals you update the lock file based on the direct dependency list.

I’ve written multiple articles on the topic, in case you’re not familiar with the relevant tools:

Read NumPy 2 is coming: preventing breakage, updating your code

55
 
 

cross-posted from: https://slrpnk.net/post/3892266

Institution: Cambridge
Lecturer: Petar Velickovic
University Course Code: seminar
Subject: #math #machinelearning #neuralnetworks
Description: Deriving graph neural networks (GNNs) from first principles, motivating their use, and explaining how they have emerged along several related research lines.

56
1
submitted 2 years ago* (last edited 2 years ago) by [email protected] to c/[email protected]
 
 

cross-posted from: https://slrpnk.net/post/3863486

Institution: MIT
Lecturer: Prof. Manolis Kellis
University Course Code: MIT 6.047
Subject: #biology #computationalbiology #machinelearning

More at [email protected]

57